A computational approach to creativity: Fostering success and equity in college admissions

Kibum Moon¹, Kostadin Kushlev¹, John D. Patterson², Roger Beaty², Adam Green1

¹ Georgetown University, ² Pennsylvania State University

Introduction

- Creativity is the ability to generate novel and useful ideas.
- Creativity can play a crucial role in college admissions as it can predict future academic success while being less biased by sociodemographic factors.
- Despite these possibilities, little empirical research has been done on the role of creativity in college admissions due to challenges in getting human creativity evaluations.
- To this end, we developed the computational metric of creativity and tested its potential benefits to foster success and equity in college admissions.

Hypothesis

- Compared to SAT...
- Can creativity add additional predictive value in predicting future academic success in college?
- Is **creativity** less biased by race/ethnicity?
- Is **creativity** considered in college admissions?

Methods

✤ Data

- 42,085 College Admissions Essays
- From all applicants who applied to Georgetown
- Between 2018 and 2022 (before ChatGPT)
- Before the advent of ChatGPT

Computational Creativity Metric

- Three computational measures were combined to compute the computational creativity metric.
- Fine-tuned Large Language Models
- GPT-3.5-turbo / Llama-2-7b
- Fine-tuned the model to predict the creativity of admissions essays
- ranging from 0 (low creative) to 1 (high creative)
- Fine-tuning data:
- 370 human-rated essays
- 22 creativity experts
- Each essay was rated by 3 experts
- Dataset split
 - Training/validation: 259 essays (70%)
- Test: 111 essays (30%)

Divergent Semantic Integration (DSI)

- The extent to which the meanings of the words in an essay are similar or different to each other.
- Example
- A **teacher** calls a **student** (Low DSI).
- A **teacher** calls a **walrus** (High DSI).

Can creativity promote success and equity in college admissions? **Computationally Measured Creativity Can Predict Future Academic Success at College** and Is Less Biased by Race and Ethnicity.

Table 1. Regression Analysis Predicting Future
 Cumulative GPAs

	Model 1	Model 2
Predictors	β	β
Creativity	0.34 ***	0.12 ***
SAT		0.44 ***
URM		-0.09 ***
N =	4,034	3,966
R ²	0.114	0.307

Note. *** p < .001. All variables were standardized. URM = The Under-Represented Minority: Black /African American, Hispanic, American Indian = 1, 0 otherwise

Table 2. Regression Analysis F	Predicting the URM Status
--------------------------------	---------------------------

	Model 1	Model 2
Predictors	b	b
Creativity	-0.07 ***	-0.01 ***
SAT		-0.15 ***
N =	42,085	39,621
R ²	0.029	0.139

Note. *** p < .001. All predictors were standardized. The Linear Probability Model (LPM) was used for interpretability. The Logistic regression yielded generally consistent results.

University

Table 3.	Regression	Analysis	Predicting	Admission	Outcomes
	5		J		

	Model 1	Model 2
Predictors	b	b
Creativity	0.07 ***	0.03 ***
SAT		0.13 ***
is URM		0.13 ***
N =	42,085	39,621
R ²	0.028	0.100

Note. *** p < .001. All predictors were standardized. The Linear Probability Model (LPM) was used for interpretability. The Logistic regression yielded generally consistent results. URM = The Under-Represented Minority: Black/African American, Hispanic, American Indian = 1, 0 otherwise

The Digital Health and Happiness Lab Georgetown University

• In the test dataset, we found a strong correlation between computational creativity metric and human experts' ratings (r = 0.85, p < .001)

• Creativity is an important predictor of college SUCCESS.

 Creativity is less associated with race/ethnicity than SAT. This finding is particularly important considering the recent US Supreme Court decision on Affirmative Action saying that colleges should stop considering race/ethnicity in their admissions.

• Yet, creativity may not have been adequately considered in college admissions.

• Overall, our findings highlight that incorporating creativity into college admissions can contribute to promoting students' success and diversity while reducing disparity in higher education.

Standardized Test Scores

SAT

• ACT scores were converted to SAT as the majority of applicants submitted SAT scores.

Dependent Variables

- 1. Cumulative GPAs
- 2. Race/ethnicity The Under-Represented Minority (the **URM**) Black/African/Hispanic/American Indian = 1, 0 otherwise
- 3. Admission Outcome; Accepted = 1; rejected = 0

Results

Computational Creativity Metric Validation

Future Academic Success

 Creativity positively predicted future cumulative GPAs at college after controlling for SAT and the URM status (see Table 1).

Race and Ethnicity

Each 1 SD increase in SAT scores was associated with a 15% lower chance of being a URM, compared to just a 1% decrease for creativity. (see Table 2).

Admission Outcomes

Each 1 SD increase in SAT scores was associated with a 13% higher chance of being accepted, compared to just a 3% increase for creativity. (see Table 3).

Conclusion